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Abstract

A new method for solving multidimensional inverse heat conduction problems is presented[ Using control volume
methods\ the partial heat conduction equation is replaced by a system of ordinary di}erential equations in time\ which
are then solved sequentially[ The procedure is started at a spatial node where temperature sensor is located and
sequentially marches through space to the surface node[ The accuracy of the method was demonstrated by comparison
of the calculated surface heat ~ux and temperature with the known exact solution[ Two numerical experiments\ one!
and two!dimensional inverse heat conduction problems\ are solved to illustrate the e}ectiveness\ computational e.ciency
and good accuracy of the presented method[ In the third example\ the inverse formulation is applied to a set of
experimental data[ The method can easily be extended to three!dimensional cases[ Þ 0887 Elsevier Science Ltd[ All
rights reserved[

Nomenclature

a width of the plate ðmŁ
b length of the plate ðmŁ
Bi0 � h0 = b:k\ Bi1 � h1 = a:k Biot numbers
c heat capacity ðJ kg−0 K−0Ł
E sensor depth below heated surface ðmŁ
f smoothed measured value of temperature at time t
ð>CŁ
f¹ measured value of temperature at time t ð>CŁ
f2 � f smoothed measured value of temperature at third
spatial node ð>CŁ
Fo � a = t:L1 Fourier number for one!dimensional
problems
Fo0 � a = t:b1\ Fo1 � a = t:a1 Fourier numbers for two!
dimensional problems
h"t# heat transfer coe.cient ðW m−1 K−0Ł
k thermal conductivity ðW m−0 K−0Ł
L thickness of the plate ðmŁ
N total number of data points
NT number of measurement points in moving average
_lter
q heat ~ux ðW m−1Ł

� Corresponding author

qc estimated heat ~ux for errorless data ðW m−1Ł
qc\p estimated heat ~ux for data with errors ðW m−1Ł
qE heat ~ux at the sensor location ðW m−1Ł
qN nominal heat ~ux of the triangular test case ðW m−1Ł
q1 surface heat ~ux ðW m−1Ł
r radius ðmŁ
rin inner radius of cylinder ðmŁ
rout outer radius of cylinder ðmŁ
s measured value of temperature after spatial
smoothing ð>CŁ
t time ðsŁ
T temperature ð>CŁ
T9 initial temperature ð>CŁ
Ts surface temperature ð>CŁ
T�"t# ~uid temperature ð>CŁ
x\ y Cartesian coordinates[

Greek symbols
a thermal di}usivity ðm1 s−0Ł
bi\ gi roots of characteristic equations
DFo dimensionless time step
Dt time step ðsŁ
Dx\ Dy spatial sizes of control volumes ðmŁ
U dimensionless temperature
l random variable of normal distribution with zero
mean
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r density ðkg m−2Ł
s standard deviation of the measurement errors[

Subscripts and superscripts
c calculated
ex exact
E measurement location
f measurement temperature
i spatial node index
j temporal node index
p approximated
q heat ~ux
s surface
t total
¦ dimensionless
� ambient[

0[ Introduction

The inverse heat conduction problem "IHCP# is
de_ned as the estimation of the boundary conditions
from transient temperature measurements at one or more
interior locations[ Due to the ill!posedness of the IHCP\
it is more di.cult to solve than the direct problem[ In the
past two decades various solution methods have been
developed to handle the one!dimensional IHCP ð0Ð4Ł[
However\ very few studies have been published on the
multi!dimensional IHCP ð5Ð01Ł[ One!dimensional IHCP
are very often solved using the space marching methods
ð02Ð05Ł[ In these techniques stabilizing future measure!
ment times are inherently used[ A major disadvantage
of the space marching _nite di}erence methods is sti}
coupling of time and space grid points[ The number of
future time steps depends on the number of spatial grid
points\ not on the physics of the problem[ Furthermore\
the space marching procedures utilize exact matching of
the calculated temperature with the measured tem!
perature and thus are sensitive to measurement errors[
Despite the relatively large interest expressed in multi!
dimensional IHCP\ most of the reported studies have
presented techniques which require considerable
amounts of computational power to solve the IHCP[

In this paper\ the control volume approach in con!
junction with the method of lines is employed to solve
the IHCP when the temperature _eld depends on more
than one spatial coordinate[ The proposed method is
simple and capable of handling two! and three!dimen!
sional problems[ Its accuracy is comparable with other
techniques\ while the programming e}ort and com!
putation time can be substantially less[

The presented technique produces accurate and
reliable results without iteration and step by step com!
putation in the time domain until the speci_c time
reached[ Past and future time data are incorporated

within the algorithm\ but the number of these steps is
independent of the number of spatial node points[

1[ Analysis

In this section we pose the problem of inverse heat
conduction in one and two dimensions[ Using the control
volume approach\ the partial di}erential equation is
replaced by a system of ordinary di}erential equations[
The time derivatives are not approximated by _nite
di}erences "the method of lines#[

1[0[ One!dimensional IHCP

First\ consider the one!dimensional linear inverse heat
conduction problem in cylindrical coordinate system
illustrated in Fig[ 0a[ The ~ux and temperature are
assumed to be known as discrete functions of time at the
location r � rE]

T"rE\ t# � f"t# "0#

qE � −k
1T
1r br�rE

[ "1#

The heat ~ux "1# at r � rE can be found from the
solution for the temperature distribution in rE ¾ r ¾ rout\
since the problem in this space domain can be analyzed as
the direct heat conduction problem[ Thus\ two conditions
are speci_ed at r � rE and none at r � rin[ The ther!
mophysical properties of the solid are assumed to be
independent of temperature[ The boundary condition at
r � rout is known[ The ambient temperature T� is known
from measurements[ It is desired to predict the heat ~ux
and the temperature history at the exposed surface r � rin[

The heat transfer coe.cient is given by]

h"t# �
qs "t#

T�−T"rin\ t#
"2#

where]

qs "t# � −k
1T"r\ t#

1r br�rin

[ "3#

In order to solve the IHCP the inverse domain
rin ¾ r ¾ rE is divided into the three control volumes[ Due
to the location of the known conditions\ it is reasonable
to begin with a heat balance for node 2 located at r � rE]

p"r1
3−r1

2#cr
df2
dt

�
1pr2k

Dr
"T1−f2#¦

1pr3k
Dr

"T3−f2#[ "4#

Similar equations are derived for two other nodes\ 1 and
0]

p"r1
2−r1

1#cr
dT1

dt
�

1pr1k
Dr

"T0−T1#¦
1pr2k

Dr
"T2−T1#

"5#
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Fig[ 0[ One!dimensional inverse heat conduction problem with control volume grid in inverse domain[
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p"r1
1−r1

0#cr
dT0

dt
�

1pr0k
Dr

"T9−T0#¦
1pr1k

Dr
"T1−T0#

"6#

where Dr �"rE−rin#:1[
The temperatures T3 and T9 at _ctious nodes outside

the inverse domain are calculated from the following
central di}erence approximation for boundary con!
ditions at r � rE and r � rin "Fig[ 0#]

−k
T3−T1

1Dr
� qE "7#

and

−k
T1−T9

1Dr
� qs[ "8#

Solving these equations for the temperatures T3 and T9

yields]

T3 � T1−
1qEDr

k
"09#

and

T9 � T1¦
1qsDr

k
[ "00#

Substituting equation "09# into equation "4# and solv!
ing it for the temperature T1 yields]

T1 � f2¦
0
1

"Dr#1

a

df2
dt

¦
r3

r2¦r3

1qEDr
k

"01#

where a � k:cr[
As the calculation proceeds from the right!hand

boundary to the left\ the temperature T0 will be estab!
lished as equation "01# is substituted into the heat balance
equation "5#]

T0 � f2¦
r1¦r2

r1 $
"Dr#1

a

df2
dt

¦
"Dr#3

3a1

d1f2

dt1

¦
1r3

r2¦r3

qEDr
k

¦
r3

r2¦r3

"Dr#2

ak
dqE

dt %[ "02#

The surface heat ~ux is calculated from the heat bal!
ance equation "6# at the surface node]

qs "t# �"r1¦r2# $
kDr
1a 0

0
r0

¦
0
r11

df2
dt

¦
k"Dr#2

3a1 0
r0¦r1

r0r1

¦
0

1r0

¦
0

1r11
d1f2

dt1

¦
k"Dr#4

05a2

r0¦r1

r0r1

d2f2

dt2 %
¦qE

r3

r2¦r3 0
r2−r0

r0

¦
r1¦r2

r1 1
¦

"r1¦r2#r3

r2¦r3 $
"Dr#1

1a 0
r0¦r1

r0r1

¦
0
r0

¦
0
r11

dqE

dt

¦
"Dr#3

3a1

r0¦r1

r0r1

d1qE

dt1 %[ "03#

When r0\ r1\ r2\ r3 : �\ the equations "02# and "03# are
reduced to the following expressions]

T0 � Ts � f2¦
0
1

E1

a

df2
dt

¦
0
21

E3

a1

d1f2

dt1

¦
qEE
k

¦
0
7

E2

ka

dqE

dt
"04#

and

qs � qE¦k $
E
a

df2
dt

¦
2
05

E2

a1

d1f2

dt1

¦
0

017
E4

a2

d2f2

dt2 %¦
0
1

E1

a

dqE

dt

¦
0
21

E3

a1

d1qE

dt1
"05#

where E � 1Dx\ Dx!control volume thickness "Fig[ 1#
and f2 is smoothed measured temperature at the third
node[

The above equations are the approximate solution of
the inverse heat conduction problem for planar geometry
"Fig[ 0#[

Equations "04# and "05# are the numerical analogues
of the exact solution given by Stefan ð08Ł and Burggraf
ð19Ł[ Truncating the in_nite series in the exact solution
after two terms gives]

T0 � Ts � f2¦
0
1

E1

a

df2
dt

¦
0
13

E3

a1

d1f2

dt1
¦

qEE
k

¦
0
5

E2

ka

dqE

dt
¦

0
019

E4

ka1

d1qE

dt1
"06#

qs � qE¦k $
E
a

df2
dt

¦
0
5

E2

a1

d1f2

dt1 %¦
0
1

E1

a

dqE

dt

¦
0
13

E3

a1

d1qE

dt1
[ "07#

An examination of the formulas "04# and "06# indicates
that the _rst di}erence between the _nite control volume
method and exact solutions are di}erent coe.cients on
the time derivatives[ Additional di}erence is the lack of
the second!order time derivative of the heat ~ux qE in
equation "04#[ In the case of the heat ~ux ðequations "05#
and "07#Ł the third derivative of the measured tem!
perature f2"t# appears only in the developed solution "05#[
This is very advantageous because in all inverse problems
it is much more di.cult to determine the surface heat
~ux than the surface temperature[ The third derivative
term in equation "05# allows to determine qs with higher
accuracy[
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Fig[ 1[ Two!dimensional inverse heat conduction problem[

As the number of control volumes increases\ higher
derivatives appear in the approximate solutions "04# and
"05#[ To calculate correctly the surface heat ~ux and
temperature time derivative of the measured temperature
f"t# and the related heat ~ux qE"t# should be evaluated
with high accuracy[ The _nite di}erence interpolation is
the predominant numerical technique for determination
of function derivatives\ but because of its low accuracy

is inappropriate in this case[ Interpolation is e}ective as
a means of constructing derivative approximations only if
su.ciently accurate data values are available[ Otherwise\
other methods of approximation must be used[

The problem of the order of time derivatives in the
inverse solution is very complex[ When the input data
are exact and in_nite di}erentiable then accounting for
the high!order times derivatives in the inverse solution
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improves its accuracy[ On the other hand\ it is well known
that di}erentiation of noisy data is basically an unstable
process[ If the data being di}erentiated are from exper!
imental tests\ or are observations subject to errors of
measurement\ the errors so in~uence the higher!order
derivative values calculated by _nite di}erences that they
may be meaningless[ The usual recommendation is to
smooth the data _rst[ The numerical experiments carried
out with exact and our space marching methods have
shown that its no use accounting for time derivatives
higher than the third! of fourth!order[

In this paper\ the time derivatives dnf:dtn and dnqE:dtn\
n � 9\ 0\ 1\ [ [ [ \ are calculated using local least squares
approximation of temperature and heat ~ux data with
low!order polynomials[ For a smoother approximation
of transient temperature history and its derivatives one
has to go to piecewise polynomial approximation[ The
digital _lter approach is use\ because it can be dem!
onstrated that it is much more computationally e.cient
than global approximation methods[ Due to its e.ciency\
it can be readily implemented in an on!line method of
analysis[ The time derivatives are determined from local
approximation of the data points using Gram polynomial
ð10Ł[ The local approximation means that the coe.cients
of a third!order polynomial depend only on a small num!
ber of equally spaced data points[ Extensive numerical
experiments have shown that for optimal results seven\
nine or eleven data points should be taken[ The smoothed
values of functions representing temperature history and
its derivatives are calculated only at the centre point[
Given the data f¹"t#\ f¹"t¦Dt#\ [ [ [ \ f¹ðt¦"NT−0#DtŁ\ _rst
we construct the third!order Gram polynomial and then
calculate its value and derivatives at the centre point]
t¦"NT−0#Dt:1[ In similar fashion\ the smoothed value
of qE"t# and its derivatives are calculated[ As stated\ the
order of the highest time derivative of the measured tem!
perature f"t# in the inverse solution for qs"t# is equal to
the number of control volumes into which the inverse
region is subdivided[ Accounting for the higher order!
time derivatives f n"t# in the inverse solution results in its
better accuracy if the temperature f"t# at x � E "Fig[ 0#
is exact[ However\ this feature of the method does not
lend itself readily to practical calculation using actual
data[ The quality of the reconstruction of the boundary
condition depends _rst of all on the distance E between
sensor and the active surface[ For example\ if point x � E
is located so far that it does not indicate any changes in
the boundary condition at x � 9 during the given time
interval\ it is impossible to _nd the solution of the inverse
problem[ If the changes of boundary condition cause
measurable temperature changes\ then the inverse prob!
lem can be solved properly[ The estimated boundary con!
dition is averaged over the time step used in the inverse
analysis[ When the temperature sensor is located deep
under the active surface or at the rear surface\ then the
high!frequency components of the input signal at the

active surface are attenuated inside the body and not
indicated by the temperature sensor at x � E[ The
measured temperature changes at x � E are also delayed
in comparison to the boundary condition changes[ Then\
it is very di.cult or impossible to determine the high!
frequency components of the input signal and the initial
condition by using the high!order time derivatives in the
inverse solution based on temperature measurements far
from the active surface[ The only e}ective way to deter!
mine fast time changes of the temperature or heat ~ux at
the active surface is to place the temperatures sensor
near this surface[ In order to reconstruct the boundary
condition with high accuracy based on the temperature
measurements at the interior location x � E\ it is
su.cient to divide the inverse region 9¾ x ¾ E into three
or four control volumes[ The developed method can easily
be applied for solving inverse problems in composite
bodies[

1[1[ Two!dimensional IHCP

A simple domain "Fig[ 1# is considered to study the
use of the developed method in solving the transient two!
dimensional IHCP[ The problem consists in determining
the temperature and heat ~ux at node 1 at the exposed
surface from the known temperature f¹"E\ y# at x � E[ To
calculate the surface heat ~ux at node 1\ the temperature
at adjacent nodes 0 and 2 must also be determined[ Con!
sider a two!dimensional grid as shown in Fig 1 with
Dx � Dy[ There are seven embedded thermocouples 8Ð
04\ all with a coordinate of x � E[

The heat balance equations are _rst written for nodes
09\ 00 and 01\ at which temperature is already known
from measurement]

cr
Dx
1

Dy
df09

dt
� k

f8−f09

Dy
Dx
1

¦k
T3−f09

Dx
Dy

¦k
f00−f09

Dy
Dx
1

−q09Dy "08#

cr
Dx
1

Dy
df00

dt
� k

f09−f00

Dy
Dx
1

¦k
T4−f00

Dx
Dy

¦k
f01−f00

Dy
Dx
1

−q00Dy "19#

cr
Dx
1

Dy
df01

dt
� k

f00−f01

Dy
Dx
1

¦k
T5−f01

Dx
Dy

¦k
f02−f01

Dy
Dx
1

−q01Dy[ "10#

Solving equations "08#Ð"10# for the temperature at nodes
3\ 4 and 5\ respectively\ one obtains]

T3 � f09¦
"Dx#1

1a

df09

dt
−

"Dx#1

1"Dy#1
" f8−1f09¦f00#¦q09

Dx
k

"11#
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T4 � f00¦
"Dx#1

1a

df00

dt
−

"Dx#1

1"Dy#1
" f09−1f00¦f01#

¦q00

Dx
k

"12#

T5 � f01¦
"Dx#1

1a

df01

dt
−

"Dx#1

1"Dy#1
" f00−1f01¦f02#

¦q01

Dx
k

[ "13#

A heat balance equation for node 4 is]

crDxDy
dT4

dt
� k

T3−T4

Dy
Dx¦k

T0−T4

Dx
Dy

¦k
T5−T4

Dy
Dx¦k

f00−T4

Dx
Dy "14#

which when solved for T0 yields]

T0 � 1T4¦
"Dx#1

a

dT4

dt
−

"Dx#1

"Dy#1
"T3−1T4¦T5#−f00[

"15#

Substituting T3\ T4 and T5 given by expressions "11#Ð"13#\
respectively\ into equation "15# and rearranging gives]

T0 � f00¦
1"Dx#1

a

df00

dt
¦

"Dx#3

1a1

d1f00

dt1

−
1"Dx#1

"Dy#1
" f09−1f00¦f01#

¦
"Dx#3

"Dy#3 0
0
1

f8−1f09¦2f00−1f01¦
0
1

f021
¦1q00

Dx
k

¦
"Dx#2

ak
dq00

dt

−
"Dx#2

"Dy#1k
"q09−1q00¦q01#

−
"Dx#3

a"Dy#1 0
df09

dt
−1

df00

dt
¦

df01

dt 1[ "16#

Using equation "16# the temperature at nodes located
at x � 9 can be determined in similar fashion[ Having
calculated the temperature at nodes 0\ 2 and 5\ the surface
heat ~ux at node 1 can be obtained[ Using a heat balance
on node 1\ which is undergoing heat transfer with the
environment\ one obtains]

cr
Dx
1

Dy
dT1

dt
� k

T0−T1

Dy
Dx
1

¦k
T2−T1

Dy
Dx
1

¦k
T5−T1

Dx
Dy¦q1Dy[ "17#

The solution to this equation is]

q1 � k $
Dx
1a

dT1

dt
−

Dx

1"Dy#1
"T0−1T1¦T2#−

T5−T1

Dx %[
"18#

If the grid array is square "Dx � Dy#\ the expression for
T0 becomes]

T0 � 7f00−3f09−3f01¦
0
1

f8

¦
0
1

f02¦
E1

a

df00

dt
¦

E3

21a1

d1f00

dt1

−
E1

3a

df09

dt
−

E1

3a

df01

dt
¦

1E
k

q00

¦
E2

7ak
dq00

dt
−

E
1k

q09−
E
1k

q01[ "29#

Examining the equations "16# and "18# reveals that the
temperature and heat ~ux at surface node 1 are a}ected
only by a few number of measured quantities at x � E[
Only changes in temperature and heat ~ux in very close
domain to the analysed node have an in~uence on the
estimated temperature and heat ~ux at this node[

An inverse domain can be divided into nonregular or
nonrectangular grids[ If the body is irregularly shaped\
then the developed method can also be used[ In such
a case instead of applying the classical control volume
method\ the control volume _nite!element method should
be used ð10\ 11Ł[

2[ Smoothing of temperature data

The solutions "04# and "05#\ as well as "16# and "18#\
show the dependence of the surface temperature and heat
~ux on high!orders of time derivatives of the measured
temperature and the related heat ~ux both at x � E[
The IHCP is ill!posed[ Therefore\ the solutions are very
sensitive to measurement errors in input data[ Variations
in the surface conditions of the body are attenuated at
interior locations of the body[ Conversely the small
measurement errors in the data are magni_ed at the sur!
face and may cause large oscillations in the estimated
surface temperature and heat ~ux[ To minimize the e}ects
of noisy data the measured temperature and heat ~ux at
x � E should be smoothed before they are used in the
IHCP algorithm[ Least squares approximation is very
well suited for the recovery of a smooth function from
noisy information[ It is possible to chose an appropriate
function which is ~exible enough to reconstruct the
underlying noisefree function and its derivatives while
still orthogonal to the noise\ i[e[\ unable to follow the
oscillations in the measured data[ Because of the low
accuracy of derivative approximations by _nite!di}er!
ences they will not be considered in this paper[ The Gram
orthogonal polynomial ð12Ł are used for smoothing of
measured time!temperature history[ Assuming that
measurement points f¹"yi\ tj# are equally spaced in time
and in the y!direction\ we construct a piecewise cubic
polynomial and then use a least squares procedure to
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estimate appropriate polynomial coe.cients[ Piecewise
polynomials have lately become more widely used in least
squares data _tting since they are more ~exible than
simple polynomials[ Most of the methods assume that
the beginning and the end of the data are _xed[ However\
for on!line systems\ it is frequently necessary to follow
and _t the data without knowing its end beforehand[
In case of the local method the approximating Gram
polynomial depends only on a few of the nearest data
points[ A set of neighbouring data points is not large^
usually 6\ 8 or 00 data points are used[ The value of
smoothing Gram polynomial and its derivatives will be
calculated only at the centre of the approximation inter!
val\ while for determining of polynomial coe.cients
future and past data points\ usually 2\ 3 or 4\ are used[
Using the estimated Gram polynomial a moving aver!
aging _lter is constructed ð07Ł[ The smoothed value of
time!space!temperature history is calculated by _ltering
in two independent directions\ y and t[ To _t a surface
f"y\ t# through data on rectangular grid "yi\ tj\ f¹i\j# the two!
way univariate approximation is used[ First\ the _ltering
is applied to measured data\ keeping tj _xed and varying
i\ and then by applying it again to the resulting sets of
spatially smoothed data points\ but this time keeping yi

_xed and varying j[ The _rst smoothing gives a least
squares _t to the seven data points f¹i\j\ i−2\ i−1\ [ [ [ \
i\ [ [ [ \ i¦1\ i¦2 for tj � const "Fig[ 2#[ The smoothed
values of temperature si\j at spatial nodes 8Ð04 are
obtained using moving seven!point digital _lters\ which
results from the aforementioned least!squares approxi!
mation by Gram polynomial]

si−2\j �
0
31

"28f¹i−2\j¦7f¹i−1\j−3f¹i−0\j

−3f¹i\ j¦f¹i¦0\j¦3f¹i¦1\j−1f¹i¦2\j# "20#

si−1\j �
0
31

"7f¹i−2\j¦08f¹i−1\j¦05f¹i−0\j

¦5f¹i\ j−3f¹i¦0\j−6f¹i¦1\j¦3f¹i¦2\j# "21#

Fig[ 2[ Spatial smoothing of the measured temperatures using seven point averaging _lter[

si−0\j �
0
31

"−3f¹i−2\j¦05f¹i−1\j¦08f¹i−0\j

¦01f¹i\ j¦1f¹i¦0\j−3f¹i¦1\j¦f¹i¦2\j# "22#

si\ j �
0
10

"−1f¹i−2\j¦2f¹i−1\j¦5f¹i−0\j¦6f¹i\ j

¦5f¹i¦0\j¦2f¹i¦1\j−1f¹i¦2\j# "23#

si¦0\j �
0
31

" f¹i−2\j−3f¹i−1\j¦1f¹i−0\j¦01f¹i\ j

¦08f¹i¦0\j¦05f¹i¦1\j−3f¹i¦2\j# "24#

si¦1\j �
0
31

"3f¹i−2\j−6f¹i−1\j−3f¹i−0\j¦5f¹i\ j

¦05f¹i¦0\j¦08f¹i¦1\j¦7f¹i¦2\j# "25#

si¦2\j �
0
31

"−1f¹i−2\j¦3f¹i−1\j¦f¹i−0\j−3f¹i\ j

−3f¹i¦0\j¦7f¹i¦1\j¦28f¹i¦2\j#[ "26#

The spatially _tted data points are smoothed once
again using eleven point time averaging digital _lter "Fig[
3#]
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f ý"yi\ tj# �
4
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Fig[ 3[ Time smoothing of the measured temperatures using eleven point averaging _lter[
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si\ j−2¦
12
29

si\ j−1¦
6
04

si\ j−0−
6
04

si\ j¦0

−
12
29

si\ j¦1−
00
04

si\ j¦2−
0
4
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The temperature history and its time derivatives are
evaluated at the centre point j[ In equations we consider
future and past data\ where the j¦0\ [ [ [ \ j¦4 are the
future data and those j−0\ [ [ [ \ j−4 are the past data[
Having calculated the temperature and its derivatives at
the center point\ the whole time interval 09Dt is moved
one time step forward dropping the last data point " j−4#
and adding a new one[ Since no past data is available in
the _rst interval\ the calculations should start at least _ve
steps before heating or cooling starts[ If this is done\ the
equations "27#Ð"30# can be used for tj � 9\ i[e[ when the
real process begins[ In one!dimensional IHCP there is no
need to spatially smooth the data[ In this case one can
assume si\j � f¹i\j in equations "27#Ð"30#[ On the other
hand\ in two!dimensional steady!state IHCP\ the time
smoothing is dropped[

3[ Algorithm testing

In order to test the accuracy of the developed method
the two numerical examples are presented[ Although all
experiments have error\ studying the e}ects of errorless
measurements can give insight into the maximum poss!
ible resolution of surface conditions available from the
measurements[ The only error introduced into the prob!
lem is the error due to computer roundo}[ To illustrate
the power of the method\ it was implemented on an IBM

PC 375 using single precision arithmetic[ Therefore\ the
exact and {noisy| data will be considered[

3[0[ One!dimensional IHCP test case

One of the standard test cases for comparing results of
inverse heat conduction algorithms is for a triangular
heat ~ux[ The geometry is a ~at plate and the sensor is
located at the surface] x � E � L\ which is insulated[
This test case is thoroughly discussed by Beck et al[\ Chap
4 ð0Ł[ The heat ~ux is zero before time zero and is again
zero after dimensionless time 0[1\ with a triangular ~ux
in between and a maximum occurring at time Fo � 9[5
"Figs 4 and 5#[ The simulated temperature measurements
with errors added have been taken from ð0Ł[ The noisy

Fig[ 4[ Calculated surface heat ~ux for triangular heat ~ux^
errorless data\ 0\ applied surface heat ~ux\ 1\ estimated heat ~ux
using StefanÐBurggrafÐLangford method\ 2\ present method[
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Fig[ 5[ Calculated surface heat ~ux for triangular heat ~ux^ data
with random errors\ 0\ applied surface heat ~ux\ 1\ estimated
heat ~ux using StefanÐBurggrafÐLangford method\ 2\ present
method[

data f¹"t# is obtained by adding a random error to Tj\
i[e[\ f¹j � Tj¦oj\ where Tj is exact temperature and oj is a
Gausian random variable of variance s1[

The square root of the variance is given by]

s¦
f �

k
qNLX

0
N

s
N

j�0

"Tj =x�L−f¹j#1[ "31#

The dimensionless time steps are DFo � 9[95[ For this
example\ the following parameter values are used]
T9 � 19>C\ L � 9[0 m\ k � 41 W m−0 K−0\
a � 03[3 = 09−5 m1 s−0\ Dt � 30[6 s "DFo � 9[95#\ qN � 094

W m−1[
The results for the test case with errorless data are

shown in Fig[ 4[ For errors equal to s¦
f � 9[9906 "about

9[4) of the maximum temperature rise of the measured
temperature# the results shown in Fig[ 5 are nearly as
good as for no measurement errors[ The exact and noisy
temperature data f¹j were smoothed using eleven point
averaging _lter[ The exact solution of the IHCP ð08\ 19Ł
for the same data produced results that are surprisingly
close to those of the presented method[ The series in the
exact solution were truncated after the second term[ If
the discretized computed heat ~ux component is denoted
q¦

c\p"tj# and the true "exact# component is q¦
ex "tj#\ in order

to measure the error\ the sample root mean square norm
is introduced^ it is given by]

s¦
q\t �X

0
N

s
N

j�0

ðq¦
ex "tj#−q¦

c\p "tj#Ł1[ "32#

The sensitivity of the method to random errors is given
by]

s¦
q �X

0
N

s
N

j�0

ðq¦
c "tj# =s¦

j �9−q¦
c\p "tj#Ł1[ "33#

The root mean squared errors in q for s¦
f � 9[9906

are]

s¦
q\t � 9[90603 and s¦

q � 9[99777 for the presented
method and s¦

q\t � 9[91021 and s¦
q � 9[997936 for the

exact method[

The s¦
q\t:s

¦
f and s¦

q :s¦
f ratios for both methods are given

below]

+ "s¦
q\t:s

¦
f # � 09[0 and "s¦

q :s¦
f # � 4[1 for the presented

method\
+ "s¦

q\t:s
¦
f # � 01[4 and "s¦

q :s¦
f # � 3[6 for the exact

method[

The same problem was solved for three di}erent div!
isions of the inverse region into control volumes "Fig[ 6#[
The temperature data f¹"t# are approximated by the Gram
polynomial of the 3th degree\ because the fourth!order
time derivatives of f"t# are included in the inverse solution
for qs"t#\ when division shown in Fig[ 6c is used[ The
smoothed values of the function f"t# are calculated in the
middle of the time interval including eleven data pairs]
"ti\ f¹i#\ i � 0\ [ [ [ \ 00[ Smoothing the data locally\ the time
derivatives are calculated using central di}erence for!
mulas ð13Ł]

f ?j �
−f¹j¦1¦7f¹j¦0−7f¹j−0−f¹j−1

01Dt

f ýj �
−f¹j¦1¦05f¹j¦0−29f¹j¦05f¹j−0−f¹j−1

01"Dt#1

f j1 �
f¹j¦1−1f¹j¦0¦1f¹j−0−f¹j−1

1"Dt#2

f j2 �
f¹j¦1−3f¹j¦0¦5f¹j−f¹j−0¦f¹j−1

"Dt#3
[ "34#

Results for two\ three and four control volumes for
triangular heat ~ux case with errorless data are displayed
in Fig[ 7[ In the case of two control volumes the results
are not satisfactory[ The agreement with the exact input
heat ~ux is very good for three and four control volumes[
If four control volumes are used\ the results are a little
better than for three control volumes[ Similar results are
shown in Fig[ 4 for three control volumes with tem!
perature data smoothed by the Gram polynomial of the
2rd degree[ It can be concluded that increasing the num!
ber of control volumes over three does not bring notice!
able improvement into the result accuracy[

In addition\ the e}ect of the random errors is much
larger "see Fig[ 8#\ when the temperature data are
approximated by the polynomial of the fourth order[
Larger errors in this case\ when compared with Fig[ 5\
are partially caused by unprecise calculation of the time
derivatives using simple formulas "34#[

The s¦
q\t:s

¦
f and s¦

q :s¦
f ratios for di}erent number of

control volumes are given below]

+ "s¦
q\t:s

¦
f # � 36[3 and "s¦

q :s¦
f # � 08[4 for two control

volumes\
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Fig[ 6[ Control volume grid for a plate^ "a# two\ "b# three\ "c# four control volumes\ respectively[

Fig[ 7[ Calculated surface heat ~ux for triangular heat ~ux case
with errorless data for various number of control volumes "CV#[

Fig[ 8[ Calculated surface heat ~ux for triangular heat ~ux case
with perturbated data for various number of control volumes
"CV#[

+ "s¦
q\t:s

¦
f # � 19[4 and "s¦

q :s¦
f # � 03[5 for three control

volumes\
+ "s¦

q\t:s
¦
f # � 05[3 and "s¦

q :s¦
f # � 01[5 for four control

volumes[
To assess the accuracy of the time derivative calculated

numerically\ dimensionless standard deviations for f?\ fý\
and f1 were calculated according to]

sf ¦"n# 3 6
0
N

s
N

i�0 $0
1nT¦"0\ Fo#

1Fon 1ex

−
1nf ¦

1Fon%
1

7
0:1

"35#

where n is the order of the time derivative\ T¦"0\ Fo#
is the dimensionless exact and f ¦ is the dimensionless
{measured| temperature at an insulated surface\ respect!
ively[

A dimensionless derivative of the nth!order is de_ned
by]

1nT¦

1Fon
�

kL1n−0

an

0
qN

1nT

1tn
[ "36#

The exact derivatives 1nT¦:1Fon were calculated ana!
lytically[ It can be seen\ from the Table 0 that the fourth!

Table 0
Dimensionless standard deviations for time derivates of
{measured| temperature

Order of the
derivative 0 1 2

Polynomial of the third!order
Exact data 9[99491788 9[0581596 1[909097
Data with errors 9[99666486 9[0477848 1[193135

Polynomial of the fourth!order
Exact data 9[99413915 9[9699117 1[915608
Data with errors 9[99611336 9[0487946 1[050575
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order Gram polynomial and the _nite di}erence formulas
"34# do not give any improvement in the results if the
data are perturbed[ Much better is the polynomial of the
third!order that ensures high accuracy of the calculated
derivatives both for errorless and perturbated data[

It is worth noting that the results obtained by using
the four control volumes are only slightly better than
those for the three control volumes\ if the temperature
data are exact "Figs 4 and 7#[ The division of the inverse
region into three control volumes in conjunction with
data _ltering based on the Gram polynomial of the 2rd
degree can be recommended for the solution of the
inverse heat conduction problems in one dimension[

It can be concluded that the presented method is com!
putationally e.cient\ accurate and not too sensitive to
measurement errors[

3[1[ Two!dimensional IHCP test case

In order to examine the accuracy of the method as
applied to the analysis of the two!dimensional IHCP\ we
consider a rectangular bar of width b and height a[ The
simulated temperature data are generated by solving the
direct heat condition problem[ The bar is at a uniform
initial temperature T9 and is exposed to a convective
environment on the top and right surfaces\ and insulated
on the remaining two sides "Fig[ 09#[ The following are
the characteristics of this test case]

a � 9[91 m\ b � 9[96 m\ k � 49 W m−0 K−0\

c � 379 J kg−0 K−0\ r � 6[74 = 092 kg m−2\ T9 � 19>C

T� � 099>C\ h0 � 0960[32 W m−1 K−0"Bi0 � 0[4#

and h1 � 499 W m−1 K−0"Bi1 � 9[1#[

In order to arti_cially generate the temperature data
at nodes "8#Ð"04# "Fig[ 09#\ the direct problem was solved
using analytical technique]

Fig[ 09[ Estimating of surface heat ~ux and heat transfer coe.cient at node 1 using temperature measurements at nodes 8Ð04[

T"x\ y\ t# � U"x\ y\ t#"T9−T�#¦T� "37#

U"x\ y\ t# � Ux"x\ t# = Uy"y\ t#

� s
�

i�0

1 sin bi cos"bix:b# exp"−b1
i Fo0#

bi¦sin bi cos bi

= s
�

i�0

1 sin gi cos"giy:a# exp"−g1
i Fo1#

gi¦sin gi cos gi

"38#

where]

Fo0 �
at

b1
\ Fo1 �

at

a1
[

The nondimensional temperature Ux"x\ t# is the solu!
tion for one!dimensional transient conduction in the x!
direction across a width b[ The temperature Uy"y\ t# is
the solution in the y!direction across a height a[ The Biot
and Fourier numbers for each of the one!dimensional
solutions are based upon the characteristic lengths b and
a\ respectively[ The eigenvalues bi and gi are the roots of
the following transcendental equations]

b sinb

cos b
−Bi0 � 9 "49#

and

g sin g

cos g
−Bi1 � 9 "40#

where]

Bi0 �
h0b
k

\ Bi1 �
h1a
k

[

The _rst twelve eigenvalues of equations "49# and "40#
are displayed in Table 1[ The temperatures calculated
from equation "37# were considered exact measurements\
Tex\ and the simulated measured temperature data\ f¹\
containing small measurement errors\ were determined
as]
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Table 1
Roots of transcendental equations "49# and "40#

i bi gi

0 9[87713 9[32173
1 2[43106 2[19283
2 5[49855 5[20373
3 8[47998 8[33484
4 01[57397 01[47115
5 04[79159 04[61958
6 07[81752 07[75905
7 11[94893 11[99913
8 14[08110 14[03958

09 17[21613 17[17039
00 20[35245 20[31118
01 23[59974 23[45229

f¹� Tex¦ls "41#

were ls is the error term and s is the selected standard
deviation for the measured data[ For normally dis!
tributed errors\ with zero mean and 88[6) con_dence
bound\ l lies within the range] −2 ¾ l ¾ 2[ The random
variable l is calculated by the IBM subroutine ð14Ł[ For
all test cases analyzed here\ we considered s � 9 "errorless
measurements# and s � 9[94 "inexact measurements#
with Dt � 2 s[ Figure 00 shows exact temperature
measurements of nodes "8#Ð"04#[ Figures 01 and 02 illus!
trate the numerical experiment results for the exact tem!
perature data and Figs 03 and 04 for the noisy data[ The
agreement between estimated and exact temperatures at

Fig[ 00[ Discrete temperature data from the direct solution use to simulate exact temperature measurements[

nodes 0Ð2 is excellent\ for both situations of errorless and
noisy measurements "Figs 01 and 03#[ The estimated heat
~ux and heat transfer coe.cient are compared with the
known true values in Figs 02 and 04[ The estimated values
match the data very well[ The numerical experiments
were performed using time and space smoothing both for
the exact and noisy data[

Instead of relying on visual comparisons\ we again give
the root mean squared errors in h]

sh\t �X
0
N

s
N

j�0

ðhex "tj#−hc\p "tj#Ł1 "42#

sh �X
0
N

s
N

j�0

ðhc\ex "tj#−hc\p "tj#Ł1[ "43#

The errors sh\t and sh are 54[8 W m−1 K−0 and 09[7
W m−1 and K−0\ respectively[ In order to determine
temperatures at nodes adjacent to the exposed surface\
the heat balance equations for nodes close to the sides
x � 9 and x � b should be written[

3[2[ Example utilizin` actual measured data

In the third example\ the inverse formulation is applied
to a set of experimental data[ A tube having an inside
radius of rin � 9[0974 m and an outside radius of
rout � 9[0274 m\ made of 02CrMo33 "Grade 20# steel was
heated on the inside surface by a ~uid of the known
temperature T�[ The tube is perfectly insulated at the
external surface[ In this experiment\ the cylinder whose
wall temperature is at _rst uniform was heated suddenly
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Fig[ 01[ Time temperature history at nodes 0Ð2 estimated from exact temperature measurements at nodes 8Ð04^ R {exact temperature^ *\
inverse solution[

Fig[ 02[ Estimated surface heat ~ux and heat transfer coe.cient at node 1 based on exact temperature measurements at nodes 8Ð04] 0\
inverse solution for heat transfer coe.cient^ 1\ exact value of heat transfer coe.cient^ 2\ inverse solution for surface heat ~ux^ 3\ exact
value of surface heat ~ux[

by hot water[ The water temperature T� changes with
time as the hot water does not ~ow through the cylinder[
The temperature distribution in the tube wall was cal!
culated based on the measured outside surface tem!

perature "Fig[ 05#[ For the relatively narrow range of
temperature changes\ the mean thermal di}usivity is
a � 0[1 = 09−4 m1 s−0 and thermal conductivity is k � 33
W m−0 K−0[ The temperature at the outside surface was
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Fig[ 03[ Time temperature history at nodes 0Ð2 estimated from noisy temperature measurements at nodes 8Ð04] R\ {exact| tempera!
ture^ *\ inverse solution[

recorded at a rate of one reading per 4 s using a data
acquisition system[ The inverse analysis was performed
at an on!line mode[ The results are shown in Figs 05 and
06[ To test the accuracy of the presented method\ the
temperature at the inside surface of the cylinder was also
measured "Fig[ 05#[

The results show good accuracy despite the relatively
small time step Dt[ However\ the accuracy for small time
is not as good as for large time[ This deviation is at!
tributed to the small number of control volumes[ The
cylinder wall should be divided into more control volumes
to achieve higher accuracy for smaller values of time[
Finer division of the space domain into control volumes
results in the higher order derivatives in the inverse solu!
tion and in its better accuracy[ The temperature measure!
ment errors must also be accounted for[ The exact
measurement of temperature at the surface of a solid
subjected to cooling or heating by a ~uid is extremely
di.cult[

Figure 06 shows the estimated surface heat ~ux and
heat transfer coe.cient at the inside surface of the cylin!
der[ During early time transients\ h"t# increases to a
maximum value[ The calculated qs"t# and h"t# functions
have their maximum about 29 s after ~ooding the cylinder
with hot water[ Then the heat transfer coe.cient
decreases with time as the temperature di}erence between
the heating ~uid and the cylinder surface DT � T�−Ts

decreases[ Sudden ~ooding of the cylinder produces the
coupled ~ow and thermal _elds along the vertical cylinder
surface\ which cause a high heat ~ux and heat transfer
coe.cient values[

4[ Conclusions

The new space marching method for one! and multi!
dimensional inverse heat conduction problems has been
presented[ The method described is mathematically sim!
ple and computationally e.cient[ To achieve high accu!
racy of the solution\ in contrary to the direct problems\
only a small number of control volumes can be
considered[ Another unique advantage of the present
formulation is that it is noniterative and nonsequential[
It is worth pointing out that the method requires no
information about the initial temperature distribution[
The inverse solution developed in the paper depends only
on the initial temperature distribution in the direct region[
Temperature distribution in the inverse region at t � 9
results from the solution of the inverse problem[ The
initial poor accuracy is a result of large distance of the
temperature sensor from the exposed surface and the
abrupt change of the ~uid temperature which make the
inverse method inaccurate[ When the temperature sensor
is placed far from the active "exposed# surface\ as in our
case\ then the measured temperature is noticeably delayed
and damped in comparison with time changes occurring
at the active surface[ Thus\ it is impossible to deter!
mine exactly the initial condition in the inverse region
in this case\ because the calculated time deriva!
tives of the measured temperature at t � 9 are of low
accuracy[ The initial temperature distribution in
the body could be determined much more precisely\
if the temperature sensor is placed near the active
surface[
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Fig[ 04[ Estimated surface heat ~ux and heat transfer coe.cient at node 1 based on noisy "s � 9[94# temperature measurements at
nodes 8Ð04] 0\ inverse solution for heat transfer coe.cient^ 1\ exact value of heat transfer coe.cient^ 2\ inverse solution for surface
heat ~ux^ 3\ exact value of surface heat ~ux[

Fig[ 05[ Comparison of the measured surface temperature with inverse solution based on temperature measurements at outer surface]
0\ measured temperature^ 1\ inverse solution^ 2\ temperature of the outer surface "input data#^ 3\ ~uid temperature[
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Fig[ 06[ Calculated heat ~ux and heat transfer coe.cient at inner surface based on temperature measurements at outer surface] 0\ heat
~ux^ 1\ heat transfer coe.cient[
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