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Abstract

A new method for solving multidimensional inverse heat conduction problems is presented. Using control volume
methods, the partial heat conduction equation is replaced by a system of ordinary differential equations in time, which
are then solved sequentially. The procedure is started at a spatial node where temperature sensor is located and
sequentially marches through space to the surface node. The accuracy of the method was demonstrated by comparison
of the calculated surface heat flux and temperature with the known exact solution. Two numerical experiments, one-
and two-dimensional inverse heat conduction problems, are solved to illustrate the effectiveness, computational efficiency
and good accuracy of the presented method. In the third example, the inverse formulation is applied to a set of
experimental data. The method can easily be extended to three-dimensional cases. © 1998 Elsevier Science Ltd. All

rights reserved.

Nomenclature

a width of the plate [m]

b length of the plate [m]

Bi, = h,*b/k, Bi, = h,*a/k Biot numbers

¢ heat capacity [J kg7' K]

E sensor depth below heated surface [m]

f smoothed measured value of temperature at time ¢
[C]

f measured value of temperature at time ¢ [°C]

fs =f smoothed measured value of temperature at third
spatial node [°C]

Fo =oa-t/L* Fourier number for one-dimensional
problems

Fo, = a-t/b*, Fo, = a-t/a*> Fourier numbers for two-
dimensional problems

h(t) heat transfer coefficient [W m 2 K]

k thermal conductivity [W m~' K]

L thickness of the plate [m]

N total number of data points

NT number of measurement points in moving average
filter

g heat flux [W m~?]

* Corresponding author

g. estimated heat flux for errorless data [W m—2]

g.p estimated heat flux for data with errors [W m~?]
¢r heat flux at the sensor location [W m~?]

¢~ nominal heat flux of the triangular test case [W m ]
g» surface heat flux [W m~?]

r radius [m]

rn Inner radius of cylinder [m]

rouw outer radius of cylinder [m]

s measured value of temperature after spatial
smoothing [°C]

t time [s]

T temperature [°C]

T, initial temperature [°C]

T, surface temperature [°C]

T..(¢t) fluid temperature [°C]

x,y Cartesian coordinates.

Greek symbols

o« thermal diffusivity [m* s/

B 7y; roots of characteristic equations

AFo dimensionless time step

At time step [s]

Ax, Ay spatial sizes of control volumes [m]

® dimensionless temperature

4 random variable of normal distribution with zero
mean
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p density [kg m~]
o standard deviation of the measurement errors.

Subscripts and superscripts
¢ calculated

ex exact

E measurement location
f measurement temperature
spatial node index
temporal node index
approximated

heat flux

surface

t total

+ dimensionless

oo ambient.

v g~ ~

1. Introduction

The inverse heat conduction problem (IHCP) is
defined as the estimation of the boundary conditions
from transient temperature measurements at one or more
interior locations. Due to the ill-posedness of the IHCP,
it is more difficult to solve than the direct problem. In the
past two decades various solution methods have been
developed to handle the one-dimensional IHCP [1-5].
However, very few studies have been published on the
multi-dimensional IHCP [6-12]. One-dimensional IHCP
are very often solved using the space marching methods
[13-16]. In these techniques stabilizing future measure-
ment times are inherently used. A major disadvantage
of the space marching finite difference methods is stiff
coupling of time and space grid points. The number of
future time steps depends on the number of spatial grid
points, not on the physics of the problem. Furthermore,
the space marching procedures utilize exact matching of
the calculated temperature with the measured tem-
perature and thus are sensitive to measurement errors.
Despite the relatively large interest expressed in multi-
dimensional IHCP, most of the reported studies have
presented techniques which require considerable
amounts of computational power to solve the IHCP.

In this paper, the control volume approach in con-
junction with the method of lines is employed to solve
the THCP when the temperature field depends on more
than one spatial coordinate. The proposed method is
simple and capable of handling two- and three-dimen-
sional problems. Its accuracy is comparable with other
techniques, while the programming effort and com-
putation time can be substantially less.

The presented technique produces accurate and
reliable results without iteration and step by step com-
putation in the time domain until the specific time
reached. Past and future time data are incorporated

within the algorithm, but the number of these steps is
independent of the number of spatial node points.

2. Analysis

In this section we pose the problem of inverse heat
conduction in one and two dimensions. Using the control
volume approach, the partial differential equation is
replaced by a system of ordinary differential equations.
The time derivatives are not approximated by finite
differences (the method of lines).

2.1. One-dimensional IHCP

First, consider the one-dimensional linear inverse heat
conduction problem in cylindrical coordinate system
illustrated in Fig. la. The flux and temperature are
assumed to be known as discrete functions of time at the
location r = rg:

T(rg, ) = (1) Q)
oT
gr = *kg . @)

=g

The heat flux (2) at r =rg can be found from the
solution for the temperature distribution in rg < r < rgy,
since the problem in this space domain can be analyzed as
the direct heat conduction problem. Thus, two conditions
are specified at r = rg and none at r = ry,. The ther-
mophysical properties of the solid are assumed to be
independent of temperature. The boundary condition at
I = Foy 18 known. The ambient temperature 7, is known
from measurements. It is desired to predict the heat flux
and the temperature history at the exposed surface r = ry,.

The heat transfer coefficient is given by:

40
h([) B Tx - T(rim t) (3)
where:
oT(r, t)
0. = k=7 @

= rlll

In order to solve the IHCP the inverse domain
rn < r < rgisdivided into the three control volumes. Due
to the location of the known conditions, it is reasonable
to begin with a heat balance for node 3 located at r = rg:

dfs  2mr;k 2nr,k
T VL R

Similar equations are derived for two other nodes, 2 and
1:

(Ti=f3)- (5

n(ri—riep

d7, 2nrk 2nrsk
— (T =T+
Ar

dr = Ar

n(i’%—r%)cp (T5-T>)

(6)
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Fig. 1. One-dimensional inverse heat conduction problem with control volume grid in inverse domain.
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dT, 2nrk 2nryk
(3 —riep=yt == (T =T+ ==

(T,—=T))

(7
where Ar = (rg—rin)/2.

The temperatures 7, and T, at fictious nodes outside
the inverse domain are calculated from the following
central difference approximation for boundary con-
ditions at r = rg and r = ry, (Fig. 1):

T,—T,
= ®
and
Lt ©
2Ar @

Solving these equations for the temperatures 7, and T,
yields:

2qeA
T, =T,— qz ! (10)
and
2¢.A
n=n+ﬁf (11)

Substituting equation (10) into equation (5) and solv-
ing it for the temperature 7, yields:
1 (Ar)2 df3 ry  2qeAr

o dr  ry+r, k

=fi+ (12)

where o = k/cp.

As the calculation proceeds from the right-hand
boundary to the left, the temperature 7, will be estab-
lished as equation (12) is substituted into the heat balance
equation (6):

rtrs[(An? dfs | (An* df;
=/fi+ +
o dr 442 4P

2ry  qpAr Ty (Al‘)S% (13)
rs+rs k ry+ry ok dr |

The surface heat flux is calculated from the heat bal-
ance equation (7) at the surface node:

kAr 1\ df5
0 =er) |5 (2 L)

k(Ar)® (r+ 1 1\d?
i (Ar) (’1 ”2_’_7_'_7) /5
402 I, 2ry 0 2ry) dp?
N k(AF)’ i+, %}

160> "2 df

r ry—r rytr
. 4 < 3 1 + 20 3>
r3+ry r I

Ar)? 1 1\d
+(”2+”3)”4 |:( r) <r1+r2+i+i>£

ry+ry 20 FiFs r dr

+ (A’")4 ry+r, quE:|
42 2 de |

(14)

When ry, r,, r5, r, = o0, the equations (13) and (14) are
reduced to the following expressions:

1 E df, 1E“df3
L=L=ht a5 g
gcE | 1E’ dge
o sk B

and

Edfy 3 E*d;
"‘_"E+k[ dr 16 2 gp

LB, 1B g
128a ds 2 o dt
1 E4 d?
qe (16)
32 2 dr?

where E = 2Ax, Ax-control volume thickness (Fig. 2)
and f; is smoothed measured temperature at the third
node.

The above equations are the approximate solution of
the inverse heat conduction problem for planar geometry
(Fig. 1).

Equations (15) and (16) are the numerical analogues
of the exact solution given by Stefan [19] and Burggraf
[20]. Truncating the infinite series in the exact solution
after two terms gives:

1E*d 1E4d E
T1=T j3+,7£+ f} qL

20 dr 24 g2 @k

1E*dge 1 E°® d?¢e

6ka di T1204, qp 07
Edfy 1E°df,] 1E*dg
— ge+k SN I
& =qet [ @6 ar T2
4d2qE
24 2 e B

An examination of the formulas (15) and (17) indicates
that the first difference between the finite control volume
method and exact solutions are different coefficients on
the time derivatives. Additional difference is the lack of
the second-order time derivative of the heat flux ¢g in
equation (15). In the case of the heat flux [equations (16)
and (18)] the third derivative of the measured tem-
perature f3(¢) appears only in the developed solution (16).
This is very advantageous because in all inverse problems
it is much more difficult to determine the surface heat
flux than the surface temperature. The third derivative
term in equation (16) allows to determine ¢, with higher
accuracy.
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Fig. 2. Two-dimensional inverse heat conduction problem.

As the number of control volumes increases, higher
derivatives appear in the approximate solutions (15) and
(16). To calculate correctly the surface heat flux and
temperature time derivative of the measured temperature
f(t) and the related heat flux ¢g(z) should be evaluated
with high accuracy. The finite difference interpolation is
the predominant numerical technique for determination
of function derivatives, but because of its low accuracy

is inappropriate in this case. Interpolation is effective as
a means of constructing derivative approximations only if
sufficiently accurate data values are available. Otherwise,
other methods of approximation must be used.

The problem of the order of time derivatives in the
inverse solution is very complex. When the input data
are exact and infinite differentiable then accounting for
the high-order times derivatives in the inverse solution
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improves its accuracy. On the other hand, it is well known
that differentiation of noisy data is basically an unstable
process. If the data being differentiated are from exper-
imental tests, or are observations subject to errors of
measurement, the errors so influence the higher-order
derivative values calculated by finite differences that they
may be meaningless. The usual recommendation is to
smooth the data first. The numerical experiments carried
out with exact and our space marching methods have
shown that its no use accounting for time derivatives
higher than the third- of fourth-order.

In this paper, the time derivatives d"f/d¢" and d"qg/d?",
n=0,1,2,..., are calculated using local least squares
approximation of temperature and heat flux data with
low-order polynomials. For a smoother approximation
of transient temperature history and its derivatives one
has to go to piecewise polynomial approximation. The
digital filter approach is use, because it can be dem-
onstrated that it is much more computationally efficient
than global approximation methods. Due to its efficiency,
it can be readily implemented in an on-line method of
analysis. The time derivatives are determined from local
approximation of the data points using Gram polynomial
[21]. The local approximation means that the coefficients
of a third-order polynomial depend only on a small num-
ber of equally spaced data points. Extensive numerical
experiments have shown that for optimal results seven,
nine or eleven data points should be taken. The smoothed
values of functions representing temperature history and
its derivatives are calculated only at the centre point.
Given the data f(?), f(t+ A1), ..., flt+(NT—1)A1], first
we construct the third-order Gram polynomial and then
calculate its value and derivatives at the centre point:
t+ (NT—1)At/2. In similar fashion, the smoothed value
of gg(?) and its derivatives are calculated. As stated, the
order of the highest time derivative of the measured tem-
perature f{¢) in the inverse solution for ¢,(¢) is equal to
the number of control volumes into which the inverse
region is subdivided. Accounting for the higher order-
time derivatives f”(¢) in the inverse solution results in its
better accuracy if the temperature f(¢) at x = E (Fig. 1)
is exact. However, this feature of the method does not
lend itself readily to practical calculation using actual
data. The quality of the reconstruction of the boundary
condition depends first of all on the distance E between
sensor and the active surface. For example, if point x = E
is located so far that it does not indicate any changes in
the boundary condition at x = 0 during the given time
interval, it is impossible to find the solution of the inverse
problem. If the changes of boundary condition cause
measurable temperature changes, then the inverse prob-
lem can be solved properly. The estimated boundary con-
dition is averaged over the time step used in the inverse
analysis. When the temperature sensor is located deep
under the active surface or at the rear surface, then the
high-frequency components of the input signal at the

active surface are attenuated inside the body and not
indicated by the temperature sensor at x = E. The
measured temperature changes at x = E are also delayed
in comparison to the boundary condition changes. Then,
it is very difficult or impossible to determine the high-
frequency components of the input signal and the initial
condition by using the high-order time derivatives in the
inverse solution based on temperature measurements far
from the active surface. The only effective way to deter-
mine fast time changes of the temperature or heat flux at
the active surface is to place the temperatures sensor
near this surface. In order to reconstruct the boundary
condition with high accuracy based on the temperature
measurements at the interior location x = E, it is
sufficient to divide the inverse region 0 < x < E'into three
or four control volumes. The developed method can easily
be applied for solving inverse problems in composite
bodies.

2.2. Two-dimensional IHCP

A simple domain (Fig. 2) is considered to study the
use of the developed method in solving the transient two-
dimensional IHCP. The problem consists in determining
the temperature and heat flux at node 2 at the exposed
surface from the known temperature f(E, y) at x = E. To
calculate the surface heat flux at node 2, the temperature
at adjacent nodes 1 and 3 must also be determined. Con-
sider a two-dimensional grid as shown in Fig 2 with
Ax # Ay. There are seven embedded thermocouples 9—
15, all with a coordinate of x = E.

The heat balance equations are first written for nodes
10, 11 and 12, at which temperature is already known
from measurement:

) AV dflo_ Jo—/f10 Ax Tyi—fo
i R TAy 2 Phay A
11 —f10 A
+k—f”Ayf‘°§fquy (19)
Ax dfll_ Jio—fi1 Ax fll
P A TR A 2+k Ax
Ax
fleyfll 7—111|Ay (20)
CAxdfi, ) fii—fia Ax Ts—fi
Py A TR TR A Y
—f12 A
+k% > —qudv. QD)

Solving equations (19)—(21) for the temperature at nodes
4, 5 and 6, respectively, one obtains:
(Ax)* dfiy  (Av)*

=it 20 dt Ay )2

Ax
(fo— f|0+f11)+l]|ok

(22)
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Ax)? df,, Ax)?
(@A) 4, - ( X)z{flo_zfll"'flz)

Ts=fu+ 20 df 2(Ay)

+ Ax (23)
g a
. APdf, (Av)? S,
T() _.f12+ 2OC ?_ Z(Av)2(fll _2_f12+.fl3)
Ax
—. (24
+412 k (24)
A heat balance equation for node 5 is:
AT T,—T; T,—Ts
cpAxAy & =k Ay Ax+k Ax Ay
T,—T;s . Ju—T;s
+k Ay Ax+k Ax Ay (25)
which when solved for T yields:
Ax)*dT Ax)?
T, :2T5+( ) 75*( )(T4*2T5+T6)*.f11~
o dr (Ay)?
(26)

Substituting 7, Ts and T given by expressions (22)—(24),
respectively, into equation (26) and rearranging gives:

2Ax)* dfy | (An)*

T, :f11+

di 202 df?

2(Ax)?
R RTIE TS

(Ay)

A D
(Ay)4 <§f9_2f10+3fll_2f12+§f13>

Ax  (Ax)* dq,

Pt @
Ay

(A_}’)Zk(qlo —2q11+412)
(Ax)* <df10 2df1| df]z)
- - + :
a(Ay)? \ dr dt dr
Using equation (27) the temperature at nodes located
at x = 0 can be determined in similar fashion. Having
calculated the temperature at nodes 1, 3 and 6, the surface
heat flux at node 2 can be obtained. Using a heat balance
on node 2, which is undergoing heat transfer with the
environment, one obtains:
Ax  dT, T,—T, Ax T,—T, Ax
cp—Ay——= —
2 dt Ay 2 Ay 2

@7

T,—T,
k————A Ay. (28
th— Artady. (28
The solution to this equation is:
AxdT, Ax
q, = P

20 dt _Q(Ay)Z

(T =21, +T5)—

T,—T,
Ax |

(29)

If the grid array is square (Ax = Ay), the expression for
T, becomes:

. 1
Tl = 8f11_4f10_4f12+§f9

1 E2d E* 2
Pt fi
2 o di 3242 dp?
Edfiy E’dfiy  2E
40 di 4o dr kI
Edqll E E

Suk dr *quofﬁ%r (30)
Examining the equations (27) and (29) reveals that the
temperature and heat flux at surface node 2 are affected
only by a few number of measured quantities at x = E.
Only changes in temperature and heat flux in very close
domain to the analysed node have an influence on the
estimated temperature and heat flux at this node.

An inverse domain can be divided into nonregular or
nonrectangular grids. If the body is irregularly shaped,
then the developed method can also be used. In such
a case instead of applying the classical control volume
method, the control volume finite-element method should
be used [21, 22].

3. Smoothing of temperature data

The solutions (15) and (16), as well as (27) and (29),
show the dependence of the surface temperature and heat
flux on high-orders of time derivatives of the measured
temperature and the related heat flux both at x = E.
The THCP is ill-posed. Therefore, the solutions are very
sensitive to measurement errors in input data. Variations
in the surface conditions of the body are attenuated at
interior locations of the body. Conversely the small
measurement errors in the data are magnified at the sur-
face and may cause large oscillations in the estimated
surface temperature and heat flux. To minimize the effects
of noisy data the measured temperature and heat flux at
x = E should be smoothed before they are used in the
IHCP algorithm. Least squares approximation is very
well suited for the recovery of a smooth function from
noisy information. It is possible to chose an appropriate
function which is flexible enough to reconstruct the
underlying noisefree function and its derivatives while
still orthogonal to the noise, i.e., unable to follow the
oscillations in the measured data. Because of the low
accuracy of derivative approximations by finite-differ-
ences they will not be considered in this paper. The Gram
orthogonal polynomial [23] are used for smoothing of
measured time-temperature history. Assuming that
measurement points f(y,,¢,) are equally spaced in time
and in the y-direction, we construct a piecewise cubic
polynomial and then use a least squares procedure to
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estimate appropriate polynomial coefficients. Piecewise
polynomials have lately become more widely used in least
squares data fitting since they are more flexible than
simple polynomials. Most of the methods assume that
the beginning and the end of the data are fixed. However,
for on-line systems, it is frequently necessary to follow
and fit the data without knowing its end beforehand.
In case of the local method the approximating Gram
polynomial depends only on a few of the nearest data
points. A set of neighbouring data points is not large;
usually 7, 9 or 11 data points are used. The value of
smoothing Gram polynomial and its derivatives will be
calculated only at the centre of the approximation inter-
val, while for determining of polynomial coefficients
future and past data points, usually 3, 4 or 5, are used.
Using the estimated Gram polynomial a moving aver-
aging filter is constructed [18]. The smoothed value of
time-space-temperature history is calculated by filtering
in two independent directions, y and ¢. To fit a surface
f(y, 1) through data on rectangular grid (y,, ¢, f;,) the two-
way univariate approximation is used. First, the filtering
is applied to measured data, keeping ¢, fixed and varying
i, and then by applying it again to the resulting sets of
spatially smoothed data points, but this time keeping y,
fixed and varying j. The first smoothing gives a least
squares fit to the seven data points f;, i—3, i—2,...,
i,..., i+2, i4+3 for t; = const (Fig. 3). The smoothed
values of temperature s;; at spatial nodes 9-15 are
obtained using moving seven-point digital filters, which
results from the aforementioned least-squares approxi-
mation by Gram polynomial:

Si—3; = 5(39.%'73,/—'—8/7}721/74};71,/
- ﬁ,i+ﬁ+l,f+4fi+2,i_2fi+3,/) (31)
Si—2j = é(gf_}f&/_._ 19.?172,/“‘ 16.?17 1,/
+6f =41, = Mivrs+ s (32)
- ~
f.s
fi-1.j
o
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Sy = 15— 43,160, +197 4,
+ 12142 = Wiiat finsy)  (33)
Sij =32 s+ 30y +6f i+ Ty
+6fii 1432, =2fs,)  (34)
Sit1,j = 41*2(]}73,/—4];72,/"'2/7}71,/"‘ lzf},j
+ 1971, +16f 0, —4f5)  (35)
Sivay = 5@ s, = Ty — 41,468,
+16fi,1,+19,2,+8fi15;)  (36)
Siv3) = ;7(—2]7}73,/+4f}72,/ +fi1,— 4
— 4180, +3%05). (37)

The spatially fitted data points are smoothed once
again using eleven point time averaging digital filter (Fig.
4):

M) = oo
JWi ;) = 429
+69s,;_,+84s; ;_ +89s, ;+84s; ;1 +69s, ;.5

+44s, ;3 +95:,14—365, 4 5)

(=368, 5s+9s,; 4+44s,, 3

(38)
1
fit) = M(SOOM,FS —294s; ;4
—532s;;_3—1503s; ;5 —296s, ;_; +296s,; ;.1 +503s, ;,»

+ 5328, ;43 +294s; ;.4 —300s, ;, 5) 39)
. 2 1
Sty = MSTl)z <3u75 + 58— 1553
2 3 2 3 2
- gb'i,/fz - gsi./'—l - gsf,/_ gsi,i+1 - gsi./'+2
1 2
_Esi./+3+§si,/’+4 +Si,/+5> (40)

5 1
" t) = 7<_5:‘. o5+ =S
J 143(Al)3 Jj=5 5ok 4

j=const

- fi+3,]

YiAy

>
1 T 1 Ll

Fig. 3. Spatial smoothing of the measured temperatures using seven point averaging filter.
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The temperature history and its time derivatives are
evaluated at the centre point j. In equations we consider
future and past data, where the j+1,...,j+5 are the
future data and those j—1,...,j—5 are the past data.
Having calculated the temperature and its derivatives at
the center point, the whole time interval 10A¢ is moved
one time step forward dropping the last data point (j—5)
and adding a new one. Since no past data is available in
the first interval, the calculations should start at least five
steps before heating or cooling starts. If this is done, the
equations (38)—(41) can be used for ¢, = 0, i.e. when the
real process begins. In one-dimensional THCP there is no
need to spatially smooth the data. In this case one can
assume s,; = f;; in equations (38)—(41). On the other
hand, in two-dimensional steady-state IHCP, the time
smoothing is dropped.

4. Algorithm testing

In order to test the accuracy of the developed method
the two numerical examples are presented. Although all
experiments have error, studying the effects of errorless
measurements can give insight into the maximum poss-
ible resolution of surface conditions available from the
measurements. The only error introduced into the prob-
lem is the error due to computer roundoff. To illustrate
the power of the method, it was implemented on an IBM

PC 486 using single precision arithmetic. Therefore, the
exact and ‘noisy’ data will be considered.

4.1. One-dimensional IHCP test case

One of the standard test cases for comparing results of
inverse heat conduction algorithms is for a triangular
heat flux. The geometry is a flat plate and the sensor is
located at the surface: x = E = L, which is insulated.
This test case is thoroughly discussed by Beck et al., Chap
5 [1]. The heat flux is zero before time zero and is again
zero after dimensionless time 1.2, with a triangular flux
in between and a maximum occurring at time Fo = 0.6
(Figs 5 and 6). The simulated temperature measurements
with errors added have been taken from [1]. The noisy

0.7
0.6 [1]

0.5 j = \
0.4 {2}
0.3

0.2
0.1 f E{E\a

l

q+

=

0

0 00 03 o6 08 12 15

Fo

Fig. 5. Calculated surface heat flux for triangular heat flux;
errorless data, 1, applied surface heat flux, 2, estimated heat flux
using Stefan—Burggraf-Langford method, 3, present method.
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Fig. 6. Calculated surface heat flux for triangular heat flux; data
with random errors, 1, applied surface heat flux, 2, estimated
heat flux using Stefan—Burggraf—~Langford method, 3, present
method.

data f(r) is obtained by adding a random error to T},
ie., f;= T,+¢, where T, is exact temperature and ¢, is a
Gausian random variable of variance ¢°.

The square root of the variance is given by:

Lo k1§ 22
C L Nj;](Til.\:L_f/) : (42)

The dimensionless time steps are AFo = 0.06. For this
example, the following parameter values are used:
T,=20°C, L=01 m, k=52 W m' K7
o=14.4-10"°m?s~', At = 41.7s (AFo = 0.06), g = 10°
Wm2

The results for the test case with errorless data are
shown in Fig. 5. For errors equal to ;" = 0.0017 (about
0.5% of the maximum temperature rise of the measured
temperature) the results shown in Fig. 6 are nearly as
good as for no measurement errors. The exact and noisy
temperature data f; were smoothed using eleven point
averaging filter. The exact solution of the IHCP [19, 20]
for the same data produced results that are surprisingly
close to those of the presented method. The series in the
exact solution were truncated after the second term. If
the discretized computed heat flux component is denoted
q.,(t;) and the true (exact) component is ¢,%(¢,), in order
to measure the error, the sample root mean square norm
is introduced; it is given by:

1 X
O = N,; [0 (1) — a5 (1)1 (43)

The sensitivity of the method to random errors is given
by:

[ N
o = N/; [qc+(ff)|a,‘:o_41c+,p([f)]2- (44)

The root mean squared errors in ¢ for a7 = 0.0017
are:

o4, =0.01714 and o/ =0.00888 for the presented
method and o, = 0.02132 and ¢, = 0.008047 for the
exact method.

The ¢,/ /o;" and ¢, /o{" ratios for both methods are given
below:

e (0,/0f) =10.1 and (o, /o{") = 5.2 for the presented
method,

e (0, /o) =125 and (o, /o) =4.7 for the exact
method.

The same problem was solved for three different div-
isions of the inverse region into control volumes (Fig. 7).
The temperature data f(z) are approximated by the Gram
polynomial of the 4th degree, because the fourth-order
time derivatives of f{#) are included in the inverse solution
for ¢,(f), when division shown in Fig. 7c is used. The
smoothed values of the function f(7) are calculated in the
middle of the time interval including eleven data pairs:
(t,f),i=1,...,11. Smoothing the data locally, the time
derivatives are calculated using central difference for-
mulas [24]:

S8 =8~

Ii= 12A¢
o L2160 =305+ 161 s
o 12(A1)?
)('{// =j}+2 _2’]7‘/'4»1 +2j‘/71 _.}7‘[—2
- 2(Ar)?
‘ ;m=f/’+2*4f_/+l+6f/*f/—l+f/72. (45)
(An*

Results for two, three and four control volumes for
triangular heat flux case with errorless data are displayed
in Fig. 8. In the case of two control volumes the results
are not satisfactory. The agreement with the exact input
heat flux is very good for three and four control volumes.
If four control volumes are used, the results are a little
better than for three control volumes. Similar results are
shown in Fig. 5 for three control volumes with tem-
perature data smoothed by the Gram polynomial of the
3rd degree. It can be concluded that increasing the num-
ber of control volumes over three does not bring notice-
able improvement into the result accuracy.

In addition, the effect of the random errors is much
larger (see Fig. 9), when the temperature data are
approximated by the polynomial of the fourth order.
Larger errors in this case, when compared with Fig. 6,
are partially caused by unprecise calculation of the time
derivatives using simple formulas (45).

The o /oi and ¢ /o ratios for different number of
control volumes are given below:

e (0, /o) =47.4 and (o, /o;") = 19.5 for two control
volumes,
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a) b)

©)

Fig. 7. Control volume grid for a plate; (a) two, (b) three, (c) four control volumes, respectively.
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Fig. 8. Calculated surface heat flux for triangular heat flux case
with errorless data for various number of control volumes (CV).
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Fig. 9. Calculated surface heat flux for triangular heat flux case
with perturbated data for various number of control volumes
(CV).

e (0, /o) =20.5 and (o, /o;") = 14.6 for three control
volumes,
e (0)/o;) =16.4 and (o, /o) = 12.6 for four control
volumes.
To assess the accuracy of the time derivative calculated
numerically, dimensionless standard deviations for /', 1",
and f” were calculated according to:

, L X [(oT(,Fo) o P
of "0 = {— [( ) _ } 46)
Ni; 0F0” ex GFO" (

where #n is the order of the time derivative, 7" (1, Fo)
is the dimensionless exact and f* is the dimensionless
‘measured’ temperature at an insulated surface, respect-
ively.

A dimensionless derivative of the nth-order is defined
by:
anT+ kL2n71 1 anT
0Fo" o AN O

The exact derivatives 0"T*/0Fo" were calculated ana-
lytically. It can be seen, from the Table 1 that the fourth-

(47)

Table 1
Dimensionless standard deviations for time derivates of
‘measured’ temperature

Order of the
derivative 1 2 3

Polynomial of the third-order

Exact data 0.00502899 0.1692607 2.010108
Data with errors ~ 0.00777597 0.1588959 2.204246
Polynomial of the fourth-order

Exact data 0.00524026 0.0700228 2.026719
Data with errors  0.00722447 0.1598057 2.161686
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order Gram polynomial and the finite difference formulas
(45) do not give any improvement in the results if the
data are perturbed. Much better is the polynomial of the
third-order that ensures high accuracy of the calculated
derivatives both for errorless and perturbated data.

It is worth noting that the results obtained by using
the four control volumes are only slightly better than
those for the three control volumes, if the temperature
data are exact (Figs 5 and 8). The division of the inverse
region into three control volumes in conjunction with
data filtering based on the Gram polynomial of the 3rd
degree can be recommended for the solution of the
inverse heat conduction problems in one dimension.

It can be concluded that the presented method is com-
putationally efficient, accurate and not too sensitive to
measurement errors.

4.2. Two-dimensional IHCP test case

In order to examine the accuracy of the method as
applied to the analysis of the two-dimensional IHCP, we
consider a rectangular bar of width b and height a. The
simulated temperature data are generated by solving the
direct heat condition problem. The bar is at a uniform
initial temperature T, and is exposed to a convective
environment on the top and right surfaces, and insulated
on the remaining two sides (Fig. 10). The following are
the characteristics of this test case:

a=002m, b=0.07m, k=50Wm 'K ',
c=480Jkg 'K, p=785-10kgm~*, T,=20°C
T, = 100°C, h, = 1071.43Wm 2K ' (Bi, = 1.5)

and K, = 500Wm 2K~ (Bi, = 0.2).

In order to artificially generate the temperature data
atnodes (9)—(15) (Fig. 10), the direct problem was solved
using analytical technique:

T(x,y,1) = OCe, . ) (Ty—T.)+ T, (48)
O, y,1) = O(x, 1) 0,(1, 1)

_ & 2sin fcos(x/b) exp(— i Foy)
- i=1 Bi+sin f;cos f;

s
i=1

where:

2siny; cos(y,y/a) exp(—y; Fo,)

. 49)
Vi+siny; cosy;

ot ot
FO] = ;, F02 =;
The nondimensional temperature ®(x, t) is the solu-
tion for one-dimensional transient conduction in the x-
direction across a width b. The temperature ©,(y, ) is
the solution in the y-direction across a height a. The Biot
and Fourier numbers for each of the one-dimensional
solutions are based upon the characteristic lengths » and
a, respectively. The eigenvalues f3; and y, are the roots of
the following transcendental equations:

/i lenf —Bi, =0 (50)
and
PSNY i — 0 (51)
cosy
where:

. b . hya

i, = At Bi, = T

The first twelve eigenvalues of equations (50) and (51)
are displayed in Table 2. The temperatures calculated
from equation (48) were considered exact measurements,
T.., and the simulated measured temperature data, f,
containing small measurement errors, were determined
as:

1 h,= 500 W/m?K

T.=100°C

b =70 mm

h,=1071.43 Wim’K

v

Y

Fig. 10. Estimating of surface heat flux and heat transfer coefficient at node 2 using temperature measurements at nodes 9-15.
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Table 2
Roots of transcendental equations (50) and (51)

i Bi Vi
1 0.98824 0.43284
2 3.54217 3.20394
3 6.50966 6.31484
4 9.58009 9.44595
5 12.68408 12.58226
6 15.80260 15.72069
7 18.92863 18.86016
8 22.05904 22.00024
9 25.19221 25.14069
10 28.32724 28.28140
11 31.46356 31.42229
12 34.60085 34.56330
F=Tutic (52)

were Ao is the error term and o is the selected standard
deviation for the measured data. For normally dis-
tributed errors, with zero mean and 99.7% confidence
bound, 4 lies within the range: —3 < 1 < 3. The random
variable / is calculated by the IBM subroutine [25]. For
all test cases analyzed here, we considered ¢ = 0 (errorless
measurements) and ¢ = 0.05 (inexact measurements)
with At =3 s. Figure 11 shows exact temperature
measurements of nodes (9)—(15). Figures 12 and 13 illus-
trate the numerical experiment results for the exact tem-
perature data and Figs 14 and 15 for the noisy data. The
agreement between estimated and exact temperatures at
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nodes 1-3 is excellent, for both situations of errorless and
noisy measurements (Figs 12 and 14). The estimated heat
flux and heat transfer coefficient are compared with the
known true values in Figs 13 and 15. The estimated values
match the data very well. The numerical experiments
were performed using time and space smoothing both for
the exact and noisy data.

Instead of relying on visual comparisons, we again give
the root mean squared errors in /:

1 XN
Ohy = N,; [hex (1)) = he (1)1 (53)

¥
o = \/ 02 lheai) —hy () (54
j=1

The errors a,, and o, are 659 W m~> K~' and 10.8
W m~2 and K !, respectively. In order to determine
temperatures at nodes adjacent to the exposed surface,
the heat balance equations for nodes close to the sides
x = 0 and x = b should be written.

4.3. Example utilizing actual measured data

In the third example, the inverse formulation is applied
to a set of experimental data. A tube having an inside
radius of r, =0.1085 m and an outside radius of
Fou = 0.1385 m, made of 13CrMo44 (Grade 31) steel was
heated on the inside surface by a fluid of the known
temperature 7. The tube is perfectly insulated at the
external surface. In this experiment, the cylinder whose
wall temperature is at first uniform was heated suddenly

85 r_]ﬂ //
0o 15 ] %
] - =
b sz < Iﬂ
R P - //: ~ oz
65 m_h - /: 7 1-13

-
-~
- ,/" o
g A
A2
iy —
A 2

Temperature T [°C]

80

100 120 140 160 = 180

Time t [s]

Fig. 11. Discrete temperature data from the direct solution use to simulate exact temperature measurements.



1136 J. Taler, W. Zima/Int. J. Heat Mass Transfer 42 (1999) 1123—1140

85 =
i Mﬁ
75 Py %ﬁ
] [ 25‘{::“?
g 65 ‘?x‘ﬁ Py
= e |
2 55 Vel /
g | L
g as /‘/<1ﬂ
el ]
= 35
25;/
150 20 " 40 ' 60 80 ' 100 ' 120 140 ' 160 180
Time t [s]

Fig. 12. Time temperature history at nodes 1-3 estimated from exact temperature measurements at nodes 9-15; A ‘exact temperature; —,
inverse solution.
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Fig. 13. Estimated surface heat flux and heat transfer coefficient at node 2 based on exact temperature measurements at nodes 9—15: 1,
inverse solution for heat transfer coefficient; 2, exact value of heat transfer coefficient; 3, inverse solution for surface heat flux; 4, exact
value of surface heat flux.

by hot water. The water temperature 7', changes with perature (Fig. 16). For the relatively narrow range of
time as the hot water does not flow through the cylinder. temperature changes, the mean thermal diffusivity is
The temperature distribution in the tube wall was cal- o =1.2-10"°m? s7! and thermal conductivity is k = 44

culated based on the measured outside surface tem- W m~' K ~'. The temperature at the outside surface was
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Fig. 14. Time temperature history at nodes 1-3 estimated from noisy temperature measurements at nodes 9-15: A, ‘exact’ tempera-

ture; —, inverse solution.

recorded at a rate of one reading per 5 s using a data
acquisition system. The inverse analysis was performed
at an on-line mode. The results are shown in Figs 16 and
17. To test the accuracy of the presented method, the
temperature at the inside surface of the cylinder was also
measured (Fig. 16).

The results show good accuracy despite the relatively
small time step Az. However, the accuracy for small time
is not as good as for large time. This deviation is at-
tributed to the small number of control volumes. The
cylinder wall should be divided into more control volumes
to achieve higher accuracy for smaller values of time.
Finer division of the space domain into control volumes
results in the higher order derivatives in the inverse solu-
tion and in its better accuracy. The temperature measure-
ment errors must also be accounted for. The exact
measurement of temperature at the surface of a solid
subjected to cooling or heating by a fluid is extremely
difficult.

Figure 17 shows the estimated surface heat flux and
heat transfer coefficient at the inside surface of the cylin-
der. During early time transients, /i(¢) increases to a
maximum value. The calculated ¢,(f) and /(7) functions
have their maximum about 30 s after flooding the cylinder
with hot water. Then the heat transfer coefficient
decreases with time as the temperature difference between
the heating fluid and the cylinder surface AT = T, — T
decreases. Sudden flooding of the cylinder produces the
coupled flow and thermal fields along the vertical cylinder
surface, which cause a high heat flux and heat transfer
coefficient values.

5. Conclusions

The new space marching method for one- and multi-
dimensional inverse heat conduction problems has been
presented. The method described is mathematically sim-
ple and computationally efficient. To achieve high accu-
racy of the solution, in contrary to the direct problems,
only a small number of control volumes can be
considered. Another unique advantage of the present
formulation is that it is noniterative and nonsequential.
It is worth pointing out that the method requires no
information about the initial temperature distribution.
The inverse solution developed in the paper depends only
on the initial temperature distribution in the direct region.
Temperature distribution in the inverse region at ¢t = 0
results from the solution of the inverse problem. The
initial poor accuracy is a result of large distance of the
temperature sensor from the exposed surface and the
abrupt change of the fluid temperature which make the
inverse method inaccurate. When the temperature sensor
is placed far from the active (exposed) surface, as in our
case, then the measured temperature is noticeably delayed
and damped in comparison with time changes occurring
at the active surface. Thus, it is impossible to deter-
mine exactly the initial condition in the inverse region
in this case, because the calculated time deriva-
tives of the measured temperature at 1 = 0 are of low
accuracy. The initial temperature distribution in
the body could be determined much more precisely,
if the temperature sensor is placed near the active
surface.
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Fig. 15. Estimated surface heat flux and heat transfer coefficient at node 2 based on noisy (¢ = 0.05) temperature measurements at
nodes 9-15: 1, inverse solution for heat transfer coefficient; 2, exact value of heat transfer coefficient; 3, inverse solution for surface
heat flux; 4, exact value of surface heat flux.
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Fig. 16. Comparison of the measured surface temperature with inverse solution based on temperature measurements at outer surface:
1, measured temperature; 2, inverse solution; 3, temperature of the outer surface (input data); 4, fluid temperature.
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